Some New Symmetric Designs for (256,120,56)
نویسنده
چکیده
We prove the existence of two symmetric designs with parameters (256,120,56) for which the full automorphism group is isomorphic to (Z17.Z8) x (Z7.Z3).
منابع مشابه
Automorphism Group of a Possible 2-(121, 16, 2) Symmetric Design
Let D be a symmetric 2-(121, 16, 2) design with the automorphism group of Aut(D). In this paper the order of automorphism of prime order of Aut(D) is studied, and some results are obtained about the number of fixed points of these automorphisms. Also we will show that |Aut(D)|=2p 3q 5r 7s 11t 13u, where p, q, r, s, t and u are non-negative integers such that r, s, t, u ? 1. In addition we prese...
متن کاملSome New Properties of the Searching Probability
Consider search designs for searching one nonzero 2- or 3-factor interaction under the search linear model. In the noisy case, search probability is given by Shirakura et al. (Ann. Statist. 24(6) (1996) 2560). In this paper some new properties of the searching probability are presented. New properties of the search probability enable us to compare designs, which depend on an unknown parameter ?...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملFlag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups
The main aim of this article is to study (v,k,λ)-symmetric designs admitting a flag-transitive and point-primitive automorphism group G whose socle is PSL(3,q). We indeed show that the only possible design satisfying these conditions is a Desarguesian projective plane PG(2,q) and G > PSL(3,q).
متن کاملHybrid Key pre-distribution scheme for wireless sensor network based on combinatorial design
Key distribution is an important problem in wireless sensor networks where sensor nodesare randomly scattered in adversarial environments.Due to the random deployment of sensors, a list of keys must be pre-distributed to each sensor node before deployment. To establish a secure communication, two nodes must share common key from their key-rings. Otherwise, they can find a key- path in which ens...
متن کامل